перейти к полному списку дипломных проектов
Ссылка на скачивания файла в формате .doc находится в конце странички
Поскольку приращение тока через резистор RX обусловлено приращением тока через транзистор VT7 или VT9, то пропорциональное приращение тока возникает и в транзисторах VT15, VT16
За счет этого крутизна прямой передачи ПНТ возрастает. С помощью транзисторов VT8, VT9 и резистора RК формируется компенсирующий ток, пропорциональный (Т, так что выполняется условие частичной нейтрализации влияния режимно зависимых сопротивлений эмиттеров транзисторов дифференциального каскада. Ориентировочное значение компенсирующего резистора можно определить как RK ( R0, а более точно это сопротивление можно выбрать в результате схемотехнического моделирования, используя рекомендации, данные ранее.
Вариант реализации схемы ПНТ с повышенной крутизной приведен на рисунке 2.16. В этом случае компенсирующий ток из коллекторной цепи отбирается с помощью измерения базового тока n-p-n транзисторов с последующим его усилением с помощью p-n-p транзисторов.
Формировать компенсирующий ток можно и в эмиттерных цепях базового дифференциального каскада, как это показано на рисунке 2.17.
В этом случае часть компенсирующего тока попадает в эмиттер дифференциального каскада, а часть тока, обусловленная коэффициентом передачи делителя тока на транзисторах VT7, VT8 (VT9, VT10) (рис. 2.17), перекрестно отправляется в коллекторы транзисторов дифференциальной пары. Фактически принцип компенсации в этой схеме можно объяснить следующим образом. Приращение тока эмиттера транзистора VT1 (VT2) обусловлено не только приращением сигнального тока через резистор R0, но и равным приращением компенсирующего тока с противоположным знаком. В результате rЭ транзисторов VT1 и VT2 остаются практически постоянными, так как ток эмиттера транзисторов дифференциальной пары практически не меняется при изменении входного напряжения.
Рис. 2.16. Вариант схемотехнической реализации линейного ПНТ с повышенной крутизной
Таким образом, сущность повышения линейности ПНТ при использовании цепей компенсации можно сформулировать следующим образом.
Тем или иным способом формируется разность напряжений база-эмиттер, зависящая от сигнального тока преобразователя, формируется компенсирующий ток, отправляемый в нужной фазе на выход преобразователя.
Практически все рассмотренные схемы ПНТ, линейность которых повышена за счет введения компенсирующих токов по такому параметру, как погрешность преобразования, напряжения в ток близки друг к другу. Достоинства или недостатки того или иного схемотехнического решения определяются лишь абсолютным значением крутизны в сравнении с базовой схемой, наличием либо отсутствием p-n-p транзисторов и частотными свойствами. Поэтому проектировщик вправе выбирать схемотехническое решение в зависимости от ограничений, принятых при разработке.
Еще одна возможность компенсации иллюстрируется схемой ПНТ (рис. 2.18). Эта схема уже рассматривалась ранее, и для нее приводилось выражение, учитывающее погрешность преобразования от коэффициента усиления тока базы и конечного выходного сопротивления транзистора со стороны эмиттера (выражение (2.13)).
Рис. 2.17. Схема ПНТ с компенсацией нелинейности в источниках тока дифференциального каскада
Если схему ПНТ с ООС дополнить усилителями тока УТ1 и УТ2 с коэффициентом усиления KI, то с их помощью измеряется базовый ток и отправляется в коллектор соответствующего транзистора. Таким образом, коэффициент, эквивалентный коэффициенту передачи тока эмиттера транзисторов VT6 (VT8), можно сделать равным единице или больше единицы за счет выбора значения KI. В этом случае выражение (2.13) можно представить следующим образом:
(2.21)
Рис. 2.18. Схема ПНТ с ООС и компенсацией нелинейной зависимости коэффициента усиления тока базы
Следовательно, если KI >1, в знаменателе выражения (2.21) появляется член с отрицательным знаком, который может компенсировать достаточно малое, но конечное значение составляющей, зависящей от выходного сопротивления транзистора со стороны эмиттера.
Рис. 2.19. Схема ПНТ с ООС и компенсацией нелинейности
Рис. 2.20. Зависимость отклонения от линейности крутизны преобразования схемы ПНТ (рис. 2.18)
Физическая реализация такого усилителя тока затруднена, однако эта же идея используется в схеме ПНТ, приведенной на рисунке 2.19. Поскольку приращение тока через резистор RX обусловлено приращением тока через транзистор VT7 или VT9, то пропорциональное приращение тока возникает и в транзисторах VT15, VT16. Приращение токов коллекторов этих транзисторов практически совпадает с приращением токов баз транзисторов VT1 и VT14 с точностью до знака, таким образом реализуется принцип компенсации, показанный выражением (2.
скачать бесплатно Способы построения аналоговых перемножителей
Содержание дипломной работы
1, имеем:
,
,
тогда
,
где k – коэффициент, обусловленный особенностями работы логарифматора; – конечный коэффициент, вносимый логарифматорами и антилогарифматором
Очевидно, что эту схему в ограниченном диапазоне напряжений можно использовать как делитель напряжения
Простейший АП на основе дифференциального каскада
По своему действию дифференциальный каскад на транзисторах VT1 и VT2 (рис
1 Схемотехнические способы снижения погрешности перемножения
Источниками погрешности перемножения в четырехквадрантном АП (рис
1 Использование отрицательной обратной связи
Функциональная схема ПНТ, использующая отрицательную обратную связь (ООС) для снижения влияния rЭ, приведена на рисунке 2
2 Использование принципов компенсации нелинейности
Основная погрешность линейности преобразования рассмотренного ПНТ обусловлена существенной режимной зависимостью rE от тока эмиттера
С помощью делителей тока ДТ часть тока IX ответвляется в транзисторы VT3 и VT4 и с соответствующим знаком суммируется с выходным током ПНТ
Если вместо делителя тока в схеме ПНТ использовать ответвитель тока (рис
Поскольку приращение тока через резистор RX обусловлено приращением тока через транзистор VT7 или VT9, то пропорциональное приращение тока возникает и в транзисторах VT15, VT16
3а), так как результирующее приращение тока через резистор R1 возникает как за счет верхнего, так и за счет нижнего плеча моста, которые имеют противоположные знаки
С ростом тока в одном из плеч дифференциального повторителя тока растет напряжение база-эмиттер входного транзистора, например VT13
1)
где IX1=IX0 +IX ; IX2=IX0 -IX ; IY1=IY0 - IY; IY2=IY0 -IY; IX, IY – соответствующие приращения токов относительно статических токов IX0 и IY0
Для снижения погрешности за счет объемных сопротивлений баз транзисторов выполнено соответствующее масштабирование площадей транзисторов множительного ядра и логарифмирующих диодов
Амплитудно-частотная и фазочастотная характеристики
низковольтного АП
Принципиальная электрическая схема низковольтного АП на основе элементной базы АБМК НПО «Интеграл» приведена на рисунке 5
На один из входов, например Y, подавалось постоянное напряжение, а на вход X – изменяющееся в заданном диапазоне
Логарифмические АЧХ (1) и ФЧХ (2)
линеаризованного смесителя
Отклонение от линейности линеаризованного смесителя не превышает 0,7 % при входном напряжении 100 мВ
В этом случае должны быть использованы транзисторы p-n-p-типа, а их свойства на порядок хуже, чем свойства транзисторов SiGe n-p-n-типа
с англ
13
Printed in U