перейти к полному списку дипломных проектов
Ссылка на скачивания файла в формате .doc находится в конце странички
2 Использование принципов компенсации нелинейности
Основная погрешность линейности преобразования рассмотренного ПНТ обусловлена существенной режимной зависимостью rE от тока эмиттера
5, а результаты сопоставительного моделирования в сравнении со схемой ПНТ (рис. 2.3а) – на рисунке 2.6.
Методика оценки нелинейности соответствует приведенной выше: определяется крутизна преобразования, нормируется относительно максимального значения крутизны на интервале входного напряжения, определяется отклонение от идеальности (линейной функции y = kx при k = 1) и умножается на 100 %.
Рис. 2.4. Функциональная схема ПНТ с ООС
Рис. 2.5. Упрощенная принципиальная схема ПНТ с ООС
При максимальном относительном изменении тока X = 0,75 погрешность базовой схемы составляет 2,5 % при входном напряжении (1,5 В, а схемы ПНТ с ООС при тех же условиях измерения – не более 0,05 %. Как будет показано ниже, такой результат не является уникальным, и зависит от глубины обратной связи. Но глубина ООС в таких схемах может быть увеличена только за счет существенного усложнения схемы. В то же время усложнение схемы и применение транзисторов p-n-p-типа сужает частотный диапазон ПНТ.
В сущности схемы, реализующие принцип ООС в ПНТ, не отличаются большим разнообразием и, в конечном счете, сводятся к той или иной схемотехнической реализации усилителей в цепи ООС. На рисунке 2.7 приведен еще один вариант реализации ПНТ, предложенный в [8].
Погрешность крутизны преобразования такой схемы зависит как от rЭ, так и от тока базы транзисторов VT1 (VT14):
, (2.13)
где (4,6 – коэффициент усиления тока базы соответствующего транзистора.
Рис. 2.6. Результаты оценки нелинейности при сопоставительном моделировании базовой схемы ПНТ и ПНТ с ООС
Рис. 2.7. Преобразователь «напряжение-ток»
Результаты моделирования схемы ПНТ (рис. 2.7) приведены на рисунке 2.8.
Погрешность данной схемы ПНТ практически такая же, как и у предыдущей (0,031 %), однако, как будет показано ниже, такое построение схемы ПНТ предоставляет интересные возможности введения дополнительных каналов компенсации, что позволит на порядок снизить погрешность крутизны преобразования.
На основании проведенных исследований можно сделать следующие выводы в отношении применения схем ПНТ с ООС:
применение ООС в ПНТ позволяет в петлевое усиление раз снизить погрешность крутизны преобразования;
в ПНТ с ООС отсутствует необходимость точного согласования резисторов;
снижение погрешности преобразования сопровождается существенным усложнением схемы, увеличением токопотребления и сужением полосы пропускания.
Рис. 2.8. График нелинейности ПНТ (рис. 2.7)
2.1.2 Использование принципов компенсации нелинейности
Основная погрешность линейности преобразования рассмотренного ПНТ обусловлена существенной режимной зависимостью rE от тока эмиттера. Суть рассмотренных ниже схемотехнических приемов заключается в том, что тем или иным способом формируется компенсирующий ток, ослабляющий влияние изменения rE при изменении тока эмиттера.
На рисунке 2.9 приведена схема одного из вариантов такого ПНТ [9]. Оценку нелинейности преобразования напряжения в ток можно произвести аналогичным способом. Для этого рассмотрим следующие уравнения:
; (2.14)
, (2.15)
где – разность напряжений база-эмиттер транзисторов VT2 и VT5; IK – компенсирующий ток вспомогательного дифференциального каскада на транзисторах VT3 и VT4; КК =IK/I0 .
Суммарный выходной ток ПНТ c учетом знаков приращений можно представить как I( = IX - IK, откуда из (2.14) и (2.15) следует:
. (2.16)
Поскольку (1+К) ( 1, последнее слагаемое в выражении (2.16) можно разложить в ряд.
скачать бесплатно Способы построения аналоговых перемножителей
Содержание дипломной работы
1, имеем:
,
,
тогда
,
где k – коэффициент, обусловленный особенностями работы логарифматора; – конечный коэффициент, вносимый логарифматорами и антилогарифматором
Очевидно, что эту схему в ограниченном диапазоне напряжений можно использовать как делитель напряжения
Простейший АП на основе дифференциального каскада
По своему действию дифференциальный каскад на транзисторах VT1 и VT2 (рис
1 Схемотехнические способы снижения погрешности перемножения
Источниками погрешности перемножения в четырехквадрантном АП (рис
1 Использование отрицательной обратной связи
Функциональная схема ПНТ, использующая отрицательную обратную связь (ООС) для снижения влияния rЭ, приведена на рисунке 2
2 Использование принципов компенсации нелинейности
Основная погрешность линейности преобразования рассмотренного ПНТ обусловлена существенной режимной зависимостью rE от тока эмиттера
С помощью делителей тока ДТ часть тока IX ответвляется в транзисторы VT3 и VT4 и с соответствующим знаком суммируется с выходным током ПНТ
Если вместо делителя тока в схеме ПНТ использовать ответвитель тока (рис
Поскольку приращение тока через резистор RX обусловлено приращением тока через транзистор VT7 или VT9, то пропорциональное приращение тока возникает и в транзисторах VT15, VT16
3а), так как результирующее приращение тока через резистор R1 возникает как за счет верхнего, так и за счет нижнего плеча моста, которые имеют противоположные знаки
С ростом тока в одном из плеч дифференциального повторителя тока растет напряжение база-эмиттер входного транзистора, например VT13
1)
где IX1=IX0 +IX ; IX2=IX0 -IX ; IY1=IY0 - IY; IY2=IY0 -IY; IX, IY – соответствующие приращения токов относительно статических токов IX0 и IY0
Для снижения погрешности за счет объемных сопротивлений баз транзисторов выполнено соответствующее масштабирование площадей транзисторов множительного ядра и логарифмирующих диодов
Амплитудно-частотная и фазочастотная характеристики
низковольтного АП
Принципиальная электрическая схема низковольтного АП на основе элементной базы АБМК НПО «Интеграл» приведена на рисунке 5
На один из входов, например Y, подавалось постоянное напряжение, а на вход X – изменяющееся в заданном диапазоне
Логарифмические АЧХ (1) и ФЧХ (2)
линеаризованного смесителя
Отклонение от линейности линеаризованного смесителя не превышает 0,7 % при входном напряжении 100 мВ
В этом случае должны быть использованы транзисторы p-n-p-типа, а их свойства на порядок хуже, чем свойства транзисторов SiGe n-p-n-типа
с англ
13
Printed in U