Логарифмические АЧХ (1) и ФЧХ (2) линеаризованного смесителя Отклонение от линейности линеаризованного смесителя не превышает 0,7 % при входном напряжении 100 мВ


перейти к полному списку дипломных проектов

Ссылка на скачивания файла в формате .doc находится в конце странички

Логарифмические АЧХ (1) и ФЧХ (2) линеаризованного смесителя Отклонение от линейности линеаризованного смесителя не превышает 0,7 % при входном напряжении 100 мВ

Как уже отмечалось, проблема построения высоколинейного перемножителя для низковольтных питающих напряжений достаточно сложна. Обычно цепи компенсации, повышающие линейность перемножителя, тем или иным способом измеряют ток в преобразователе «напряжение-ток» и формируют компенсирующее воздействие. В этом случае, как правило, требуется последовательное включение в цепи коллекторов дополнительных диодов, что потребует повышения питающих напряжений [6]. На рисунке 2.9 представлена схема балансного смесителя, способная работать при напряжении питания не более 3UБЭ. Линейность этой схемы можно оценить с помощью выражений (2.1) и (2.3), а крутизну преобразования – с помощью выражений (5.1) и (5.2):



Рис. 5.8. График изменения выходного напряжения перемножителя

(кривая 1) и отклонение от линейности в % (кривая 2), выполненного

по схеме (рис. 2.2) на транзисторах типа SGB25



Рис. 5.9. АЧХ и ФЧХ перемножителя по схеме (рис. 2.2)

на транзисторах типа SGB25

 (5.1)

 (5.2)



Рис. 5.10. Низковольтный балансный смеситель



Рис. 5.11. График изменения выходного напряжения смесителя (1)

и отклонение от линейности в % (2) при входном сигнале 50 мВ



Рис. 5.12. Логарифмические АЧХ (1) и ФЧХ (2) смесителя

Линейность смесителя оценивалась по той же методике, что и линейность перемножителя при уровне входного сигнала 50 мВ. Как и следовало ожидать, нелинейность весьма высока и превышает 6 %.

Логарифмические АЧХ и ФЧХ сняты при управляющем воздействии 175 мВ, при этом частота среза составила 24,7 ГГц при RН = 50 Ом.

Балансный смеситель, схема которого представлена на рисунке 5.10, обладает низким диапазоном входного сигнала при заданной линейности – не более 50 мВ. Проблему линеаризации такого смесителя и, по сути, превращения его в линейный перемножитель можно решить следующим образом. Как и в случае с перемножителем на основе множительного ядра Джильберта линеаризацию передаточной характеристики дифференциального каскада можно осуществить логарифмированием входного сигнала (рис. 5.13). Причем каналы X и Y в этом случае остаются абсолютно симметричны, и длина электрического пути для сигналов UX и UY одинакова.



Рис. 5.13. Схема перемножителя, полученная модифицированием схемы балансного смесителя

Результаты моделирования схемы АП (рис. 5.13) представлены на рисунках 5.14–5.15.



Рис. 5.14. Отклонение от линейности линеаризованного смесителя (в %)



Рис. 5.15. Логарифмические АЧХ (1) и ФЧХ (2)

линеаризованного смесителя

Отклонение от линейности линеаризованного смесителя не превышает 0,7 % при входном напряжении 100 мВ.

Полоса пропускания по уровню -3 дБ составляет 46 ГГц. Столь большой выигрыш в полосе пропускания схемы (рис. 5.13) объясняется тем, что множительное ядро работает при токах, соответствующих максимуму частотных свойств применяемых транзисторов. Токи входных логарифмирующих каскадов выбраны достаточно большими, чтобы выполнялось условие:

.

скачать бесплатно Способы построения аналоговых перемножителей

Содержание дипломной работы

1, имеем: , , тогда , где k – коэффициент, обусловленный особенностями работы логарифматора;  – конечный коэффициент, вносимый логарифматорами и антилогарифматором
Очевидно, что эту схему в ограниченном диапазоне напряжений можно использовать как делитель напряжения
Простейший АП на основе дифференциального каскада По своему действию дифференциальный каскад на транзисторах VT1 и VT2 (рис
1 Схемотехнические способы снижения погрешности перемножения Источниками погрешности перемножения в четырехквадрантном АП (рис
1 Использование отрицательной обратной связи Функциональная схема ПНТ, использующая отрицательную обратную связь (ООС) для снижения влияния rЭ, приведена на рисунке 2
2 Использование принципов компенсации нелинейности Основная погрешность линейности преобразования рассмотренного ПНТ обусловлена существенной режимной зависимостью rE от тока эмиттера
С помощью делителей тока ДТ часть тока IX ответвляется в транзисторы VT3 и VT4 и с соответствующим знаком суммируется с выходным током ПНТ
Если вместо делителя тока в схеме ПНТ использовать ответвитель тока (рис
Поскольку приращение тока через резистор RX обусловлено приращением тока через транзистор VT7 или VT9, то пропорциональное приращение тока возникает и в транзисторах VT15, VT16
3а), так как результирующее приращение тока через резистор R1 возникает как за счет верхнего, так и за счет нижнего плеча моста, которые имеют противоположные знаки
С ростом тока в одном из плеч дифференциального повторителя тока растет напряжение база-эмиттер входного транзистора, например VT13
1) где IX1=IX0 +IX ; IX2=IX0 -IX ; IY1=IY0 - IY; IY2=IY0 -IY; IX, IY – соответствующие приращения токов относительно статических токов IX0 и IY0
Для снижения погрешности за счет объемных сопротивлений баз транзисторов выполнено соответствующее масштабирование площадей транзисторов множительного ядра и логарифмирующих диодов
Амплитудно-частотная и фазочастотная характеристики низковольтного АП Принципиальная электрическая схема низковольтного АП на основе элементной базы АБМК НПО «Интеграл» приведена на рисунке 5
На один из входов, например Y, подавалось постоянное напряжение, а на вход X – изменяющееся в заданном диапазоне
Логарифмические АЧХ (1) и ФЧХ (2) линеаризованного смесителя Отклонение от линейности линеаризованного смесителя не превышает 0,7 % при входном напряжении 100 мВ
В этом случае должны быть использованы транзисторы p-n-p-типа, а их свойства на порядок хуже, чем свойства транзисторов SiGe n-p-n-типа
с англ
13
Printed in U

заработать

Закачай файл и получай деньги