перейти к полному списку дипломных проектов
Ссылка на скачивания файла в формате .doc находится в конце странички
Амплитудно-частотная и фазочастотная характеристики
низковольтного АП
Принципиальная электрическая схема низковольтного АП на основе элементной базы АБМК НПО «Интеграл» приведена на рисунке 5
Рис. 5.1. Упрощенная принципиальная электрическая схема
высоковольтного АП с повышенной линейностью
Результаты моделирования схемы АП (рис. 5.1) приведены на рисунках 5.2 и 5.3. Оценка погрешности перемножения производилась в режиме «квадратора», когда на входы X и Y перемножителя подавался один и тот же сигнал. Отклонение от линейности определялось как разность между идеальным (математическим) возведением в квадрат того же сигнала с соответствующим масштабным коэффициентом, отнесенным к максимальному выходному напряжению АП в заданном диапазоне изменения входного напряжения.
Рис. 5.2. Погрешность перемножителя (рис. 5.1) в режиме квадратора
Рис. 5.3. Частотная характеристика АП (рис. 5.1)
Погрешность перемножителя в режиме квадратора не превышает (0,01 % в диапазоне входных напряжений (10 В.
Частотная характеристика АП исследовалась на нагрузке сопротивлением 50 Ом. Отметим, что частота среза АЧХ собственно множительного ядра (при токовом выходе) составляет 1,5 ГГц при сопротивлении нагрузки 50 Ом. Снижение полосы пропускания (до 1 ГГц) обусловлено низким качеством транзисторов p-n-p-типа, однако использование схемотехнического способа снижения влияния емкости коллектор-база p-n-p транзисторов дает вполне приемлемый результат по полосе пропускания [14].
Рис. 5.4. Упрощенная принципиальная схема низковольтного АП
Аналогично предыдущему случаю исследовались характеристики низковольтного АП (рис. 5.4), выполненного на транзисторах АБМК.1 (НПО «Интеграл»). Его погрешность в режиме квадратора не превышает (0,008 % в диапазоне входного напряжения (1 В (рис. 5.5).
Рис. 5.5. Погрешность низковольтного перемножителя в режиме квадратора
Амплитудно-частотные характеристики каналов X и Y приведены на рисунке 5.6 (нижний график), разность фаз между каналами перемножителя – на верхнем графике. Разность фаз между каналами не превышает (0,1о вплоть до частоты 100 МГц, что позволяет использовать такие перемножители в синхронных узкополосных фильтрах [15, 16].
Рис. 5.6. Амплитудно-частотная и фазочастотная характеристики
низковольтного АП
Принципиальная электрическая схема низковольтного АП на основе элементной базы АБМК НПО «Интеграл» приведена на рисунке 5.7. На ней показаны реальные элементы (транзисторные ячейки Джильберта), часть транзисторов которых не используется. Также показаны неиспользуемые полевые транзисторы, интегрированные при изготовлении с боковыми транзисторами p-n-p-типа [13]. Такое представление схемы при моделировании позволяет учесть влияние паразитных элементов, существующих на подложке АБМК, и получить результаты, адекватные практической реализации. Эта схема АП выпущена в виде опытной партии, и ее характеристики практически полностью совпадают с параметрами АП AD834 фирмы Analog Devices.
Важным параметром АП является частотная характеристика по каналам Х и Y. Причем, если АП используется в качестве балансного перемножителя или фазового детектора, важным становится и такой параметр, как согласованность фазовых характеристик каналов. Действительно, если между каналами существует фазовый сдвиг (, то при подаче на входы опорного и измерительного сигнала с заведомо известным фазовым сдвигом (/2 напряжение на выходе АП может быть представлено как
.
Постоянная составляющая в этом случае может быть представлена через синус дополнительного угла:
,
если фазовый сдвиг ( достаточно мал.
В этом случае погрешность выделения фазы пропорциональна фазовому сдвигу между каналами. Например, при ( = 1о погрешность, отнесенная к максимальному выходному напряжению, составит 1,74 % [3]. Справедливым оказывается и обратное утверждение – погрешность линейности перемножителя порождает дополнительное постоянное напряжение на выходе, которое эквивалентно фазовой погрешности.
скачать бесплатно Способы построения аналоговых перемножителей
Содержание дипломной работы
1, имеем:
,
,
тогда
,
где k – коэффициент, обусловленный особенностями работы логарифматора; – конечный коэффициент, вносимый логарифматорами и антилогарифматором
Очевидно, что эту схему в ограниченном диапазоне напряжений можно использовать как делитель напряжения
Простейший АП на основе дифференциального каскада
По своему действию дифференциальный каскад на транзисторах VT1 и VT2 (рис
1 Схемотехнические способы снижения погрешности перемножения
Источниками погрешности перемножения в четырехквадрантном АП (рис
1 Использование отрицательной обратной связи
Функциональная схема ПНТ, использующая отрицательную обратную связь (ООС) для снижения влияния rЭ, приведена на рисунке 2
2 Использование принципов компенсации нелинейности
Основная погрешность линейности преобразования рассмотренного ПНТ обусловлена существенной режимной зависимостью rE от тока эмиттера
С помощью делителей тока ДТ часть тока IX ответвляется в транзисторы VT3 и VT4 и с соответствующим знаком суммируется с выходным током ПНТ
Если вместо делителя тока в схеме ПНТ использовать ответвитель тока (рис
Поскольку приращение тока через резистор RX обусловлено приращением тока через транзистор VT7 или VT9, то пропорциональное приращение тока возникает и в транзисторах VT15, VT16
3а), так как результирующее приращение тока через резистор R1 возникает как за счет верхнего, так и за счет нижнего плеча моста, которые имеют противоположные знаки
С ростом тока в одном из плеч дифференциального повторителя тока растет напряжение база-эмиттер входного транзистора, например VT13
1)
где IX1=IX0 +IX ; IX2=IX0 -IX ; IY1=IY0 - IY; IY2=IY0 -IY; IX, IY – соответствующие приращения токов относительно статических токов IX0 и IY0
Для снижения погрешности за счет объемных сопротивлений баз транзисторов выполнено соответствующее масштабирование площадей транзисторов множительного ядра и логарифмирующих диодов
Амплитудно-частотная и фазочастотная характеристики
низковольтного АП
Принципиальная электрическая схема низковольтного АП на основе элементной базы АБМК НПО «Интеграл» приведена на рисунке 5
На один из входов, например Y, подавалось постоянное напряжение, а на вход X – изменяющееся в заданном диапазоне
Логарифмические АЧХ (1) и ФЧХ (2)
линеаризованного смесителя
Отклонение от линейности линеаризованного смесителя не превышает 0,7 % при входном напряжении 100 мВ
В этом случае должны быть использованы транзисторы p-n-p-типа, а их свойства на порядок хуже, чем свойства транзисторов SiGe n-p-n-типа
с англ
13
Printed in U