Затем на вход сети подается входной вектор X, который должен быть классифицирован


перейти к полному списку дипломных проектов

Ссылка на скачивания файла в формате .doc находится в конце странички

Затем на вход сети подается входной вектор X, который должен быть классифицирован

Эти веса являются действительными числами, а не двоичными величинами. Двоичная версия этого образа также запоминается в соответствующем наборе весов слоя сравнения (рис. 10); этот набор состоит из весов связей, соединяющих определенные нейроны слоя распознавания, один вес на каждый нейрон слоя сравнения.

В процессе функционирования каждый нейрон слоя распознавания вычисляет свертку вектора собственных весов и входного вектора C. Нейрон, имеющий веса, наиболее близкие вектору C, будет иметь самый большой выход, тем самым выигрывая соревнование и одновременно затормаживая все остальные нейроны в слое.

Как показано на рис. 12, нейроны внутри слоя распознавания взаимно соединены в латерально-тормозящую сеть. В простейшем случае (единственном, рассмотренном в данной работе) предусматривается, что только один нейрон в слое возбуждается в каждый момент времени (т. е. только нейрон с наивысшим уровнем активации будет иметь единичный выход; все остальные нейроны будут иметь нулевой выход). Эта конкуренция реализуется введением связей с отрицательными весами lij с выхода каждого нейрона ri на входы остальных нейронов. Таким образом, если нейрон имеет большой выход, он тормозит все остальные нейроны в слое. Кроме того, каждый нейрон имеет связь с положительным весом со своего выхода на свой собственный вход. Если нейрон имеет единичный выходной уровень, эта обратная связь стремится усилить и поддержать его.



Рис. 11. Упрощенный слой распознавания

Приемник 2. G2, выход Приемника 2, равен единице, если входной вектор X имеет хотя бы одну единичную компоненту. Более точно, G2 является логическим ИЛИ от компонента вектора X.

Приемник 1. Как и сигнал G2, выходной сигнал G1 Приемника 1 равен 1, если хотя бы одна компонента двоичного входного вектора X равна единице; однако если хотя бы одна компонента вектора R равна единице, G1 устанавливается в нуль. Таблица, определяющая эти соотношения:



Рис. 12. Слой распознавания с латеральным торможением

Сброс. Модуль сброса измеряет сходство между векторами X и C. Если они отличаются сильнее, чем требует параметр сходства, вырабатывается сигнал сброса возбужденного нейрона в слое распознавания.

В процессе функционирования модуль сброса вычисляет сходство как отношение количества единиц в векторе C к их количеству в векторе C. Если это отношение ниже значения параметра сходства, вырабатывается сигнал сброса.

2.4.4 Функционирование сети APT в процессе классификации

Процесс классификации в APT состоит из трех основных фаз: распознавание, сравнение и поиск.

Фаза распознавания. В начальный момент времени входной вектор отсутствует на входе сети; следовательно, все компоненты входного вектора X можно рассматривать как нулевые. Тем самым сигнал G2 устанавливается в 0 и, следовательно, в нуль устанавливаются выходы всех нейронов слоя распознавания. Поскольку все нейроны слоя распознавания начинают работу в одинаковом состоянии, они имеют равные шансы выиграть в последующей конкуренции.

Затем на вход сети подается входной вектор X, который должен быть классифицирован.

скачать бесплатно ВОЛНОВАЯ РЕЗОНАНСНАЯ ТЕОРИЯ

Содержание дипломной работы

2 Основные определения и Леммы 2
В первых же работах выяснилось, что эти модели не только повторяют функции мозга, но и способны выполнять функции, имеющие свою собственную ценность
Их используют для дифференциации кодирующих и некодирующих участков ДНК (экзонов и интронов) и предсказания структуры белков
Мозг включает: ствол головного мозга (задний мозг), мозжечок, лимбическую систему, диэнцифалон и кору головного мозга (рис
Рисунок мозга в разрезе демонстрирует доли коры головного мозга и их функции
Мембрана концевой пуговки называется пресинаптической мембраной, а мембрана той, клетки, на которую передается импульс, - постсинаптической
В нейрокомпьютере решение принимается интуитивно; каждый нейрокомпьютер индивидуален
В сетях с обратным распространением, например, обучающие векторы подаются на вход сети последовательно до тех пор, пока сеть не обучится всему входному набору
3 Теорема о стабильности Теорема (о стабильности):  X :  2
АРТ-1 разработана для обработки двоичных входных векторов, в то время как АРТ-2, более позднее обобщение АРТ-1, может классифицировать как двоичные, так и непрерывные векторы
Упрощенный слой сравнения Чтобы получить на выходе нейрона единичное значение, как минимум два из трех его входов должны равняться единице; в противном случае его выход будет нулевым
Затем на вход сети подается входной вектор X, который должен быть классифицирован
В результате другой нейрон выигрывает соревнование в слое распознавания и другой запомненный образ P возвращается в слой сравнения
После определения выигравшего нейрона в сети не будет возбуждений других нейронов в результате изменения векторов выхода слоя сравнения С; только сигнал сброса может вызвать такие изменения
Здесь параметр е < 1, поскольку постоянные времени для торможения, как правило, больше характерных времен возбуждения, F – функция сигмоидного типа: F=l/(l+e-x) или F= 1/2 + (1/р) arctanx
Таблица 1 Библиотека событий приведена в таблице 2 Таблица 2 Для оценки временных и стоимостных параметров используем метод сетевого планирования и управления (СПУ)
Беспокойство вызывают крайне низкие частоты - КНЧ (5 Гц – 2000 Гц) и очень низкие частоты - ОНЧ (2 – 400 кГц) спектра
Под действием электростатического поля поляризуются частицы, которые «собирают» на себя микробы и пыль
Рабочий стул должен быть подъемно-поворотным и регулируемым по высоте и углам наклона сиденья и спинки, а также по расстоянию спинки от переднего края сиденья
В непосредственной близости друг от друга располагаются соединительные провода, кабели
Пользуйтесь специальными принадлежностями – подставками для ладоней или запястий, подставками для ног и т

заработать

Закачай файл и получай деньги