перейти к полному списку дипломных проектов
Ссылка на скачивания файла в формате .doc находится в конце странички
);
– автоматическое управление средствами первичной коммутации для оптимизации установившихся режимов электрических сетей;
– релейная защита электрических сетей
Рис. 1.3 Структурная схема функционального взаимодействия АСИЭ, АСУПСЭ, АСДУ и АСКУЭ при управлении процессом энергопотребления
АСКУЭ должна выполнять одновременно две функции:
- оперативный контроль и управление по выдерживанию заданного режима (кривой) потребления;
- формирование нового оптимального режима потребления на основе фактических экономических параметров потребления и тарифов на электроэнергию, а при необходимости — управление переходом на новый режим потребления.
Следует отметить, что рекомендуемые "ЕЭС России" автоматизированные системы контроля и учёта электроэнергии (или контроля, учёта и управления энергопотреблением) можно структурировать как совокупность систем АСИЭ, АСУПСЭ и АСДУ. Тогда их внедрение можно и нужно рассматривать как этап внедрения интегрированной системы экономического управления энергопотреблением (АСУ-Энерго).
Интегрированные организационно-технологические АСУ энергосистемами создаются на базе функционирующих АСУ как естественное их развитие и характеризуются рядом особенностей, в частности наличием: многомашинного оперативного информационного управляющего комплекса (ОИУК); системой сбора оперативно-диспетчерской и организационно-экономической информации; разветвлённой сетью периферийных пунктов сбора и обработки информации; АСУ различного назначения, автоматизированных систем диспетчерского (АСДУ) и организационно-экономического управления (АСОУ), АСУ технологическими процессами, АСУ энергетическими компаниями и предприятиями.
К объективным трудностям создания такой единой системы АСКУЭ можно отнести продолжающийся процесс реформирования электроэнергетики, только формирующийся рынок электроэнергии, недостаточность правовой базы и отсутствие достаточных инвестиций в отрасль.
2. Задачи автоматизированной системы диспетчерского управления энергосистемой
Задачи оперативного контроля и управления решаются в ходе процесса на различных временных интервалах, осуществляют сбор данных из каналов связи с объектами, обеспечивают создание и ведение баз данных реального времени и являются поставщиком информации для технологических задач и задач автоматического управления. Технологические задачи решаются на основе обработки и анализа данных реального времени и данных из ИБД. В комплексе АСДУ в режиме on–line на единой информационной базе должны быть реализованы функции ОИК (SCADA) и режимно–технологических задач оперативного управления, полностью адаптированные к особенностям и условиям России. Задачи автоматического управления решаются на основе обработки и анализа данных реального времени.
В качестве источника информации для АСДУ могут использоваться: ручной ввод параметров; устройства телемеханики и РЗА; комплексы АСУТП электростанций и подстанций; системы учёта электрической энергии; интегрированная база данных энергопредприятий
2.1 Задачи оперативного контроля и управления(1 группа)
Задачи оперативного управления решаются на базе программно–технических средств оперативно–информационного управляющего комплекса (ОИУК) в рамках двух подсистем: иформационно–управляющей (ИУП) и информационно–вычислительной (ИВП). Основным назначением ИУП является сбор, первичная обработка и отображение информации о текущем режиме, а также контроль допустимости режима и состояния элементов энергооборудования. В задачи ИВП входят болеё сложные вычислительные функции, обеспечивающие помощь оперативному персоналу с расчётом допустимости нормальных и послеаварийных режимов, ремонтных заявок, коммутационных переключений, оценку состояния работы электрических, тепловых сетей и электростанций, определение расстояния до места повреждения, оперативный прогноз нагрузок и контроль за потреблением энергии и мощности, расчёт и оптимизацию электрических и тепловых режимов в реальном времени, диагностику основного оборудования. В части обработки телеинформации должны решаться задачи:
– приёма телеизмерений и телесигналов по каналам связи, контроль достоверности, восстановление недостоверных данных, расчёт интегралов, осреднение, контроль пределов;
– архивирования;
– контроля состояния системы сбора информации и формирование статистических данных о работе отдельных элементов системы сбора;
– управления диспетчерским щитом;
– ретрансляции телеинформации на другие уровни управления.
В части диспетчерской ведомости должны решаться задачи:
– переноса телеизмеряемых данных в архивы и ведомости;
– переноса интегральных и осредняемых значений телеизмерений в архивы и ведомости;
– приёма и передачи данных по каналам межуровневого обмена;
– уточняющего расчёта данных диспетчерской ведомости;
– формирования отчётных документов требуемой структуры.
2.2 Технологические задачи (2 группа)
Технологические задачи решаются в рамках подсистем:
– технологических задач диспетчерского управления;
– планирования режимов.
В подсистему технологических задач диспетчерского управления входят задачи автоматизации функций диспетчерского персонала:
– формирование и ведение оперативной расчётной схемы электрической и тепловой сети;
– ведение оперативного журнала диспетчера;
– ведение оперативной документации;
– автоматизированное рассмотрение диспетчерских заявок;
В подсистему планирования режимов входят задачи:
– прогноз нагрузок на характерные периоды;
– оценка режимных последствий ввода в работу новых объектов и подключёния их к электрическим и тепловым сетям;
– разработка и корректировка нормальных и ремонтных режимов работы оборудования;
– расчёт потерь энергии в электрических сетях и на электростанциях,
– анализ и прогноз надёжности, качества электроснабжения;
– расчёт удельных расходов топлива и себестоимости выработки энергии на электростанциях.
Режимно–технологические задачи оперативного управления включают:
– отслеживание состояния топологии электрической сети энергосистемы по данным ТИ и ТС;
– контроль правильности работы телеизмерительной системы на основе сравнения фактических и оценённых значений телеизмеряемых режимных параметров;
– оценку надёжности текущих режимов и выдача рекомендаций по её повышению;
– оптимизацию текущих электрических режимов энергосистемы и выдача рекомендаций по снижению потерь активной мощности;
– внутрисуточную коррекцию режимов энергосистемы по активной мощности;
– возможность проведения проверочных расчётов режимов на основе реальных данных с целью оценки допустимости тех или иных решений, принимаемых диспетчером;
– возможность проведения обучения диспетчерского персонала на основе данных реального времени.
В область режимно–технологических задач краткосрочного планирования входят:
– краткосрочный прогноз суммарной нагрузки энергосистемы и её 'районов на основе фактических нагрузок, хранящихся в диспетчерской ведомости:
– расчёт краткосрочного баланса мощности энергосистемы;
– оптимальное распределение нагрузки между электростанциями энергосистемы;
– формирование расчётной схемы и нагрузок узлов для краткосрочного планирования электрических режимов энергосистемы;
– расчёт и оптимизация краткосрочных электрических режимов энергосистемы исходя из минимума потерь и соблюдения заданных ограничений;
– оценка режимной надёжности сформированных краткосрочных режимов энергосистемы;
– определение плановых краткосрочных значений технико–экономических показателей работы энергосистемы;
– обработка и достоверизация контрольных замеров;
– определение статических характеристик нагрузок;
– прогноз нагрузок в узлах электрических сетей на характерные периоды;
– расчёт плавких вставок предохранителей, устанавливаемых на трансформаторах;
– оценка режимных последствий ввода в работу новых объектов и подключёния их к электрическим сетям;
– разработка и корректировка нормальной и ремонтной схем сетей;
– разработка типовых ремонтных схем;
– расчёт, анализ и прогноз надёжности схем электроснабжения;
– расчёт, анализ и прогноз качества электроэнергии в электрических сетях;
– расчёт, анализ, нормирование и прогноз потерь электроэнергии в электрических сетях.
2.3 Задачи автоматического управления (3 группа)
К таким задачам относятся:
– автоматическое управление энергоагрегатами (котел, турбина, генератор и т.д.);
– автоматическое управление средствами регулирования напряжения и реактивной мощности;
– автоматическое управление средствами первичной коммутации для локализации ав
скачать бесплатно Развитие систем автоматизации и диспетчеризации СЭС
Содержание дипломной работы
Задачи автоматизированной системы диспетчерского управления энергосистемой
2
Разработка автоматизированной системы диспетчерского контроля жизнеобеспечения на базе контроллеров Continium
6
), то принято такую систему называть автоматизированной системой энергоснабжения (АСУ-Энерго)
Телеизмерения (ТИ) – должны обеспечивать возможность измерения основных параметров, отображающих работу системы и позволяющих правильно управлять ситуацией
В группу алгебраически суммируются данные определенных измерительных каналов одного вида учёта (точки учёта) в соответствии со схемой АСУ-Энерго конкретного предприятия
3) между системами АСИЭ, АСУПСЭ, АСКУЭ и АСДУ позволяет создать контур управления, замкнутый на верхнем уровне экономического управления потребления и производства электроэнергии
);
– автоматическое управление средствами первичной коммутации для оптимизации установившихся режимов электрических сетей;
– релейная защита электрических сетей
5 Задачи АСДУ
Задачи АСДУ, в общем, должны быть аналогичными для всех энергопредприятий (за исключением Энергосбыта, где есть только задачи АСКУЭ)
4 Унификация технических и программных средств АСДУ
В настоящий момент внедрение систем АСДУ ограничено, в основном, установкой автономных телемеханических комплексов разных производителей
Чтобы добиться поставленных задач, необходимо использовать для автоматизации систем управления современные технологии и микропроцессорные средства автоматизации
Смысл OMAC-требований к контроллерам можно сформулировать в терминах, основные из которых представлены в названии архитектуры:
Open (открытая) архитектура, обеспечивающая интеграцию широко распространённого на рынке аппаратного и программного обеспечения;
Modular (модульная) архитектура, позволяющая использовать компоненты в режиме Plug Play;
Scaleable (масштабируемая) архитектура, позволяющая легко и эффективно изменять конфигурацию для конкретных потребностей;
Economical (экономичная) архитектура, обеспечивающая невысокую стоимость жизненного цикла контроллерного оборудования;
Maintainable (легко обслуживаемая) архитектура, выдерживающая напряженные условия работы в цехах и простая в ремонте и обслуживании (минимальное время простоя)
В любом случае в такой системе должны присутствовать дополнительные программные компоненты — драйверы модулей ввода вывода, специфичные для каждого типа примененных модулей
С точки зрения программиста, NZ-6000 представляет собой не что иное, как обычный PC, поэтому программировать его можно как с помощью традиционных языков программирования (C , Pascal, Basic и т
7 Система управления на базе контроллера Quantum
Можно применять "горячую" замену модулей (удаление/установка модулей без отключения контроллера)
оборудования, пожаров, утечки взрывоопасных и ядовитых газов, хищений оборудования и кабеля
Для предотвращения утери информации, хранящейся в базе данных в составе сервера необходимо предусмотреть аппаратные средства резервного копирования базы данных
Безопасность и экологичность
Важным моментом в комплексе мероприятий направленных на совершенствование условий труда диспетчера СЭС являются мероприятия по охране труда
2 Анализ микроклимата
Значительным физическим фактором является микроклимат рабочей зоны, особенно температура и влажность воздуха
Допустимым уровнем звукового давления в октавных полосах частот, уровни звука и эквивалентные уровни звука на рабочем месте следует принимать данные из таблицы 9
9
Индекс помещения определяется по формуле:
А и В - длина и ширина помещения, м;
Нр - высота подвеса светильника над рабочей поверхностью, м
6 Электромагнитные излучения
Мониторы являются основным источником различных видов излучений (электромагнитного, ионизирующего, неионизирующего) и статического электричества
), расчётный коэффициент затрат (Ер), срок окупаемости капитальных затрат (Т), годовой экономический эффект (Э)
6)
где
- стоимость технических средств;
- затраты на транспортировку и монтаж технических средств
Следовательно, экономия энергоресурсов будет равна разности между этой запланированной величиной расхода и той фактической величиной, которая была бы без внедрения управляющей системы
В соответствии с указанным ожидаемый годовой эффект при ожидаемом годовом потреблении электроэнергии Ргод =1326792 тыс
5 Экономия электроэнергии за счет эффективного управления компрессорами
Оценим величину экономии электроэнергии при управлении системой компрессоров
А
Потребич А